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Aminoacylphosphatidylglycerol synthases (aaPGSs) are mul-
tiple peptide resistance factors that transfer amino acids from
aminoacyl-tRNAs to phosphatidylglycerol (PG) in the cytoplas-
mic membrane. Aminoacylation of PG is used by bacteria to
decrease the net negative charge of the cell envelope, diminish-
ing affinity for chargedmolecules and allowing for adaptation to
environmental changes. Lys-PGS, which transfers lysine to PG,
is essential for the virulence of certain pathogens, providing
resistance to both host cationic antimicrobial peptides and ther-
apeutic antibiotics. Ala-PGS was also recently described, but
little is known about the possible activities of other members of
the highly diverse aaPGS family of proteins. Systematic deletion
of the predictedmembrane-inserted domains of several aaPGSs
revealed that the carboxyl-terminal hydrophilic domain alone is
sufficient for aminoacylphosphatidylglycerol transferase cata-
lytic activity. In contrast to previously characterized aaPGSs, the
Enterococcus faecium enzyme used an expanded repertoire of
amino acids to modify PG with Ala, Arg, or Lys. Reexamination
of previously characterized aaPGSs also revealed broader than
anticipated substrate specificity, for example Bacillus subtilis
Lys-PGS was shown to also catalyze Ala-PG synthesis. The
relaxed substrate specificities of these aaPGSs allows for more
elaborate remodeling of membrane lipids than previously
thought, potentially providing bacteria that harbor these
enzymes resistance to a broad spectrum of antibiotics and envi-
ronmental stresses.

To adapt to changing environmental conditions, such as
those encountered during host infection, bacteria must alter
the properties of their cellular envelope by adjusting the com-
position and abundance of their membrane lipids. Bacteria
choose from a variety of lipid components that vary in fatty acid
chain length and saturation levels and that bear a repertoire of
different polar head groups. Aminoacylphosphatidylglycerol
synthases (aaPGSs)2 are enzymes embedded within the bacte-
rial membrane that are responsible for the transfer of amino
acids from aminoacyl-tRNAs (aa-tRNAs) to the polar head
groups of phosphatidylglycerol (PG). Addition of amino acids

to membrane PG is a critical mechanism evolved by bacteria to
decrease the net negative charge of the cell membrane (1). This
alteration of charge diminishes the membrane affinity for cati-
onic antimicrobial peptides used by the host immune system
(i.e. defensins), and for other bactericidal agents (2). During
infection, aaPGSs have been shown to be essential for the viru-
lence of several pathogenic microorganisms by facilitating the
evasion of antibiotic activity. Their role in virulence and their
broad distribution in bacterial species make aaPGSs attractive
targets for new therapeutic strategies to combat pathogenic
microbes.
Lys-PG in the membrane allows for the evasion of neutro-

phils and enhances the virulence of Staphylococcus aureus both
in mice (3) and in endovascular infection of rabbits (4). Similar
observations were made for Listeria monocytogenes, in which
Lys-PG enhances infectivity of epithelial cells andmacrophages
inmice (5, 6). Moreover, Lys-PG provides S. aureuswith resist-
ance to other classes of cationic bactericidal agents such as van-
comycin (glycopeptide) and daptomycin (lipopeptide) (7, 8),
which are often used as a last resort to treat infections. A new
aaPGS with altered specificity was recently discovered in Clos-
tridium perfringens and Pseudomonas aeruginosa (9, 10). This
enzyme, Ala-PGS, is responsible for the formation of Ala-PG in
the membrane. Despite the net neutral charge of Ala-PG, this
modification has been shown to enhance bacterial resistance to
certain cationic antimicrobial peptides (10). Both Lys-PG and
Ala-PG have also been shown to enhance the resistance of S.
aureus and P. aeruginosa to several negatively charged �-lac-
tams (e.g. oxacillin, methicillin, cefsulodin) (7, 10, 11). These
latter findings suggest that aaPGs confer antibiotic resistance
both by diminishing the net negative charge of the membrane
and bymodulatingmore general biophysical properties such as
membrane fluidity and permeability (12). In addition, aaPGs
not only decrease membrane permeability to cationic antimi-
crobial peptides, but also to protons and osmolytes (e.g. lactate),
providing bacteria with resistance to challenging osmotic or
acidic growth conditions such as those encountered during fer-
mentative growth (10, 13, 14).
Despite recent progress,many questions remain unanswered

concerning PG aminoacylation in bacteria. Since the identifica-
tion of Lys-PGS and Ala-PGS and the discovery of resistances
associated with these enzymes the amino acid specificities of
only seven aaPGSs have been directly characterized (2, 5, 9, 10,
13, 15–18). Predicted aaPGS sequences from different orga-
nisms display a remarkable level of secondary structural diver-
sity. To date, 348 putative aaPGS genes in 213 distinct species
have been identified in 96 different genera of microorganisms,
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covering almost all known groups of bacteria. Also, 49 of the
available genome sequences encode two or more aaPGS paral-
ogs. This dual occurrence is most often encountered in Gram-
positive bacteria, particularly in members of the Actino-
bacteria class (e.g.Mycobacterium, Streptomyces, etc.). Here, we
describe structure/function-based assignment of aaPGS cata-
lytic domains that subsequently allowed us to identify new
amino acid specificities of PG aminoacylation. The coexistence
of several such activities in the same organism expands the set
of unique aaPGSs that are available for tuning of membrane
properties and may provide these bacteria with resistance to a
far broader spectrum of antimicrobial agents and environmen-
tal conditions than previously appreciated. In addition, our
work shows that although some aaPGSs display strict substrate
specificity (e.g. Lys-PGS fromC. perfringens), some aaPGSs dis-
play relaxed substrate specificity in vitro. For example, Entero-
coccus faecium aaPGS exhibits a triple specificity for Ala-, Arg-,
and Lys-tRNA, and Bacillus subtilis displays a dual specificity
for Lys- and, Ala-tRNA.

EXPERIMENTAL PROCEDURES

Strains, Plasmids, and General Methods—The open reading
frames encoding the aaPGSs from E. faeciumDO (gi: 69245409
and 69249189) and Agrobacterium tumefaciens (gi: 15889786)
were amplified by PCR and cloned under the control of the T7
promoter at theNcoI/XhoI restriction sites of the vector pet33b
(kanR; Novagen). The same vector was previously used for the
cloning of the aaPGSs from B. subtilis andC. perfringens (9, 15).
Recombinant vectors were used to transform the Escherichia
coli strain C41 DE3 containing the plasmid pRARE2 (camR;
Novagen) expressing tRNAs for translation of rare codons.
Protein production was performed according to procedures
described before (15) in autoinduction medium incubated
overnight at 30 °C under agitation. To remove the membrane
domain of aaPGSs partially or totally, site-directedmutagenesis
was performedwith theQuikChange kit (Stratagene) according
to the manufacturer’s instructions. Affinity-tagged lysyl-tRNA
synthetase (Lys-RS) and alanyl-tRNA synthetase (Ala-RS) from
E. coli and arginyl-tRNA synthetase (Arg-RS) from jack bean
were produced and purified according to procedures described
previously (19–21).
Membrane Extracts and Lipid Analysis—Membrane suspen-

sions from aaPGS-expressing strains were prepared by succes-
sive centrifugation steps. Briefly, the cells were disrupted by
sonication in a buffer containing 50mMTris-HCl, pH 8.0, 1mM

diisopropylfluorophosphate, 1 mM phenylmethylsulfonyl fluo-
ride, 3 mM 2-mercaptoethanol. Cell debris were removed by
centrifugation for 15 min at 10,000 � g. Membranes were sedi-
mented from the supernatant by ultracentrifugation for 45min
at 250,000� g.Membrane suspensionwas obtained after gentle
sonication of the pellet and was then stored at �80 °C in the
lysis buffer containing 20% glycerol. The concentration of pro-
tein in the membrane suspension was 15–20 mg/ml, as meas-
ured by the method of Bradford (Bio-Rad). Total lipids were
extracted from cells using the procedure of Bligh and Dyer (22)
with 120 mM potassium acetate, pH 4.5, in the aqueous phase.
Lipids were analyzed by TLC on Silica Gel HL plates (Analtech)
developed in one dimension or two dimensions by using, suc-

cessively, the solvents chloroform:methanol:water (14:6:1, vol/
vol/vol) in the first dimension and chloroform:methanol:acetic
acid (13:5:2, vol/vol/vol) in the second dimension. Lipids were
visualized by fluorescence after staining with primuline.
tRNA-dependent AaPG Synthesis—aaPGS activity within the

membrane suspensions obtained from aaPGS-producing
strains was assayed in a reaction medium containing 100 mM

Hepes-NaOH, pH 7.2, 30 mM KCl, and 15 mM MgCl2, 8 mM

ATP, 2mg/ml total tRNA fromE. coliMRE600 (RocheApplied
Science), 20�M14C-labeled amino acids, 1�Mappropriate ami-
noacyl-tRNA synthetase, 3.25 mg/ml membrane extract, and a
2 mg/ml suspension of egg-PG (Avanti) prepared as described.
After 30min of incubation at 37 °C, lipids were extracted by the
Bligh and Dyer procedure (22), dried, and resuspended in 20 �l
of a solution of chloroform:methanol (2:1). 2 �l of the extract
was then subjected to analysis by TLC (see above). Transcripts
of tRNAArg from jack bean and tRNALys UUU from E. faecium
were synthesized as previously described, and used in the aaPG
biosynthesis assay in the presence of E. coli Lys-RS or jack bean
Arg-RS, respectively.
Alignment and Phylogenetic Analysis—Sequences were

retrieved by Blast (23) using the Lys-PGS from B. subtilis as a
template. 437 aaPGS sequences displaying an E value � 10E-6
were aligned using ClustalX 2.0 (24). The alignment was split
according to the three different domains present in aaPGSs
(membrane, hydrophilic, and Lys-RS domains), and the se-
quences were independently realigned. Phylogenetic analyses
were conducted with the Phylip package 3.68 with a represent-
ative subset of 230 sequences displaying �95% identity. The
tree was constructed from a bootstrap of 100 replicates of a
degapped alignment of 218 residues using the neighbor-joining
method. A consensus tree was edited with iTOL (25). Predic-
tion of transmembrane helices in aaPGSs was performed using
TMHMM (26) and TOPCONS (27).

RESULTS

E. faecium Possesses a Dual-specificity Arg/Lys-PGS—Previ-
ous reports describe the presence of several amino acids asso-
ciated with phosphatidylglycerol in the membrane of E. fae-
cium (formerly Streptococcus faecalis) (28). These studies
showed that Lys-PG is present, along with significant amounts
of Arg-PG, in the membrane of this organism, suggesting the
possible presence of two distinct aaPGSs responsible for the
biosynthesis of these two aaPGs. The presence of two aaPGS
paralogs responsible for the biosynthesis of two distinct aaPGs
(Lys-PG and Ala-PG) has recently been reported in C. perfrin-
gens (9). Using B. subtilis Lys-PGS as a guide, BLAST search
analyses of the publicly available genome sequences of E. fae-
cium (E. faeciumDO, TX1330, 1141733, 1231501, Com12, and
Com15) revealed the presence of two aaPGS paralogs encoded
in all six organisms. Both open reading frames (aaPGS1 and
aaPGS2, accession numbers ZP_00603404 and ZP_00604896,
respectively) from E. faecium DO were cloned in pet33b and
expressed in E. coli. The aaPGS activities of membrane extracts
from the producing strains were tested with Lys-tRNALys and
Arg-tRNAArg as aminoacyl group donors. This analysis failed to
reconstitute the activity of aaPGS1 but showed unambiguously
the dual aa-tRNA specificity (Lys/Arg) of aaPGS2 (Fig. 1).
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These results suggest that the presence of Arg-PG and Lys-PG
in the membrane of E. faecium may be due to a single aaPGS
that bears two aa-tRNA specificities. Further in vitro character-
ization of these activities with tRNA transcripts (i.e. tRNALys

UUU from E. faecium and tRNAArg from jack bean) revealed
that aaPGS2 displays a specific activity for lysylation of PG only
6.5-fold higher than that for arginylation. This result prompted
us to reinvestigate the specificities of known aaPGSs using an
expanded range of aa-tRNAs and to determine the specificity of
a previously uncharacterized aaPGS.
AaPGSs Display Divergent Specificity for Aa-tRNAs in Vitro—

The specificities of the Lys-PGS from B. subtilis and of the Ala-
PGS from C. perfringens have been determined previously (9,
18) andwere now reinvestigated using Lys-, Arg- andAla-tRNA
as substrates. An aaPGS homologous to Lys-PGS has also been
reported in the Rhizobiales (i.e. Sinorhizobium medicae) for
which it conferred resistance to lethal acidic conditions (14).
However, the function of aaPGS in Rhizobiales remained
unclear because no Lys-PG was detected (14). These previous
results prompted us also to characterize the substrate specific-
ity of a Rhizobiales aaPGS, in this case from the plant pathogen
A. tumefaciens. All aaPGSs tested displayed activity in vivo (Fig.
2) and amoderate specificity toward their aa-tRNAs. For exam-
ple, the B. subtilis enzyme, previously reported as a Lys-PGS,
was also able to synthesize Ala-PG, but Arg-PG was not
detected in this case (Fig. 2B). A. tumefaciens aaPGS synthe-
sized Lys-PG, but no trace amounts of either Arg-PGorAla-PG
could be detected when this enzyme was assayed with Ala-
tRNAAla and Arg-tRNAArg (Fig. 2C). Although the B. subtilis
aaPGS displayed relaxed substrate specificity, Ala-PGS from C.
perfringens exhibited a more stringent specificity for Ala-
tRNAAla because neither Lys-PG nor Arg-PG was synthesized
by this enzyme (Fig. 2D). Reexamination of E. faecalis aaPGS2
revealed that it was able to make Ala-PG in addition to Arg-PG

andLys-PG (Fig. 2E). Our findings show that known aaPGSs fall
into three categories according to their specificities: (i) aaPGSs
that display a single, strict, specificity (e.g. Ala-PGS from C.
perfringens and Lys-PGS from A. tumefaciens) and produce no
detectable traces of other aaPGs; (ii) aaPGSs with a “primary”
specificity (i.e. Lys-PGS from B. subtilis) that are also capable of
producing several other aaPGs less efficiently; and (iii) aaPGS
with relaxed specificity (Ala/Arg/Lys-PGS from E. faecium)
able to synthesize several aaPGs at comparable levels.
AaPGS Structural Heterogeneity—To correlate the divergent

specificity of aaPGSs with structural features, 230 representa-
tive sequences from 204 organisms were aligned and compared
(Fig. 3). AaPGSs are predicted to be composed of a membrane-
inserted amino terminus appended to a hydrophilic carboxyl
terminus, but the precise role of each of these domains is
unknown. The membrane domain varies in size and in

FIGURE 1. Activity of aaPGS2 from E. faecium. AaPGS activities in the mem-
brane fraction of the E. coli strain C41 transformed with the vector pet33b
empty (C41-pet) or producing aaPGS2 from E. faecium (C41-Efa2) were
assayed as described under Experimental Procedures in the presence of
[14C]Lys (K) or [14C]Arg (R).

FIGURE 2. Specificity of aaPGSs from various origins. Membrane extracts
from the E. coli strain C41 containing the empty vector pet33b (C41-pet; A) or
producing the aaPGS from B. subtilis (C41-bsu; B), A. tumefaciens (C41-Atu; C);
C. perfringens (C41-Cpe; D); or E. faecium (C41-Efa2; E). Activities were assayed
as described under Experimental Procedures in the presence of [14C]Lys (K),
[14C]Arg (R), or [14C]Ala (A).
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sequence and is even absent from aaPGS homologs in a few
cases (e.g. Streptomyces, Burkholderia). Based on the predicted
secondary structure, the membrane-inserted domain is
thought to consist of a variable number of �-helices (4 to 14)
that orient the amino-terminal extremity and direct the hydro-
philic carboxyl-terminal moiety toward the cytoplasm where
aa-tRNAs, the substrate of aaPGSs, are synthesized. Biochemi-

cally characterized aaPGSs possess a membrane domain con-
taining 14 predicted �-helices, except for the Ala-PGS from C.
perfringens that contains only six helices. More distant aaPGS,
such as the paralogs found in actinomycetes, are fused with a
Lys-RS domain that displays 40% identity with E. coli Lys-RS.
This domain exhibits all of the features associated with tRNA
lysylation such as a tRNA anticodon binding domain (OB-fold)

FIGURE 3. Phylogeny and modular organization of aaPGSs. Aa-tRNA specificity of the aaPGSs that have been characterized in vitro is indicated (black arrow).
The modular organization and number of predicted helices within the integral membrane domain of each sequence, respectively, are reported beside each
named organism and by a colored background. Branches displaying a bootstrap support �80% are indicated by gray circles. The number of aaPGS paralogs
within a given organism is indicated in brackets.
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along with all the conserved positions in Lys-RSs necessary for
substrate binding (Lys, ATP, and tRNA) and enzyme dimeriza-
tion (data not shown). The presence of this domain in aaPGS is
probably involved in the channeling of the Lys-tRNA toward
the membrane modification site. However, these enzymes pos-
sess a notably shorter membrane domain, containing six trans-
membrane �-helices. These secondary structural comparisons
suggest that the aaPGS active site is likely located within the
hydrophilic carboxyl-terminal moiety of the polypeptide.
AaPGSs Contain a Catalytic Carboxyl-terminal Domain—

To determine whether the membrane-inserted domain of
aaPGS plays a role in catalysis, the amino termini of the C.
perfringens Ala-PGS and of the B. subtilis Lys-PGS were trun-
cated to leave either one or none of the hydrophobic helices
intact. It is worth noting that these predicted membrane
domains are quite divergent: B. subtilis Lys-PGS contains14
helices whereas C. perfringens Ala-PGS contains only 6. The
activity of the different constructs was then investigated in vivo
and in vitro. Although the presence of a single helix resulted in
little or no activity in vitro, removal of the entire membrane
domain led to variants with significant activity, indicating that
aaPG synthesis is catalyzed by the hydrophilic amino terminus
alone (Fig. 4). In contrast, only the full-length aaPGSs, but none
of the truncated variants, displayed aaPG synthetic activity in
vivo (Fig. 5).

DISCUSSION

Distinct Roles of the AaPGS Amino- and Carboxyl-terminal
Domains—Recent studies of aaPGSs, particularly in the context
of drug-resistantmprF alleles, provided preliminary indications
of the possible roles of different domains of the protein. For
example, loss of daptomycin susceptibility allowed the tentative
assignment of lysyl-PG translocase (flippase) activity to the
N-terminal eight transmembrane helices of S. aureus Lys-PGS
(29, 30). It was also proposed that the synthase domain con-
sisted of six transmembrane helices appended to the carboxyl
terminus. Our data now show that the carboxyl terminus alone
is sufficient for full synthase activity in vitro. The absence of
activity in vivo for the carboxyl-terminal domain alone suggests
that transmembrane helices position the catalytic domain in
the cytosol during aaPG synthesis. The dual role of the mem-
brane-inserted amino terminus, both as a translocase and for
anchoring the catalytic moiety, is consistent with the high
degree of heterogeneity observed in this region compared with
the more conserved carboxyl terminus (Fig. 3). AaPGSs are
encoded in many phylogenetically distant bacteria, and diver-
gence in the membrane-inserted domain may reflect adapta-
tion to a wide range of cell wall morphologies and lipid compo-
sitions. The carboxyl-terminal catalytic domain instead
recognizes molecules that show relatively little phylogenetic
variation, aa-tRNAs, consistent with the higher degree of con-
servation seen within this domain across different species.
Aa-tRNA Selection by AaPGS—Pioneering studies in S.

aureus first identified lysyl-tRNA-dependent PG modification
by Lys-PGS as a means to increase the net positive surface
charge of bacteria (2, 31). More recently, tRNA-dependent
Ala-PG synthesis was also demonstrated (9), thereby establish-
ing that the aaPGS family does not exclusively catalyze lipid

lysylation. BothArg andornithinewould be expected to have an
impact on the charge of PG comparable with Lys, and both
Arg-PG and ornithyl-PG have previously been identified in
bacteria (for review, see 32). Although tRNA-dependent orni-
thyl-PG synthesis could not be detected,3 Arg-PG and Ala-PG
synthase activities were readily observed for some Lys-PGs
tested. The triple specific Ala/Arg/Lys-PGS from E. faecium
displayed the broadest specificity because this enzyme was also
able to synthesizeAla-PG at an efficiency comparablewithArg-
or Lys-PG. These data suggest that aaPGSs capable of transfer-
ring bulkier amino acids such as Lys or Arg may display a mod-
erate specificity comparedwith those that utilize smaller amino
acids such as Ala. These observations imply that aaPGSs
adapted to bind smaller amino acids (i.e. Ala) cannot accom-

3 H. Roy and M. Ibba, unpublished results.

FIGURE 4. Activity of truncated aaPGSs. A, schematic representation of the
B. subtilis (Bsu) and C. perfringens (Cpe) aaPGSs. Truncation within the amino-
terminal membrane domain of both proteins is indicated. The membrane
domains of B. subtilis and C. perfringens aaPGSs contain 14 and 6 �-helices,
respectively (as predicted by TOPCONS). B, aaPGS activity of full-length and
truncated proteins. Membrane extracts were tested as described under
Experimental Procedures with the corresponding 14C-labeled aa-tRNA in a
medium containing 14C-labeled amino acids, ATP, total tRNA from E. coli, and
the cognate aa-RS.
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modate bulkier substrates such as Lys or Arg. Conversely, those
aaPGSs that preferentially utilize Lys or Arg as substrates can
sometimes accommodate smaller amino acids such as Ala. A
refinedmodel for themolecular basis of amino acid recognition
and discrimination by aaPGSs now requires detailed structural
studies, but it is noteworthy that our initial findings are remi-
niscent of size-based amino acid discrimination strategies
described for some aa-RS proteins (33, 34).
Functional Implications of Relaxed Substrate Specificity—It

was shown recently that Ala-PG and Lys-PG impact cellular
physiology in many similar ways, suggesting that the primary
role of aaPGS is to neutralize the net negative charge of PG
rather than place a particular aminoacyl group in the mem-
brane (1, 10). In this respect, aaPGSs differ from other tRNA-
dependent cell wall synthesis and remodeling enzymes that
supply specific amino acids for processes such as peptidoglycan
biosynthesis (35, 36). This functional difference between
aaPGSs and related enzymes is consistent with the expanded
range of aaPG synthesis described here. The relaxed specificity
of aaPGSs allows cells to modulate their net charge using a
wider range of substrates than previously anticipated. This, in
turn, provides ameans bywhich a single pathway can be used to
adapt to environmental conditions under which different
amino acids may become limiting at various points in the life
cycle of the cell. The ability to adapt to particular environments
may be facilitated further by regulation of aaPGSs of differing
specificities in a single organism, such as in C. perfringens that
encodes both anAla-PGS and a Lys-PGS (9). Future studies will
focus on understanding in more detail how the full range of
aaPGS activities alters cellular physiology, in particular with
respect to determining the roles of aaPGs in defining a wide
spectrum of antibiotic resistances.
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14. Reeve, W. G., Bräu, L., Castelli, J., Garau, G., Sohlenkamp, C., Geiger, O.,
Dilworth, M. J., Glenn, A. R., Howieson, J. G., and Tiwari, R. P. (2006)
Microbiology 152, 3049–3059

15. Hachmann, A. B., Angert, E. R., and Helmann, J. D. (2009) Antimicrob.
Agents Chemother. 53, 1598–1609

16. Samant, S., Hsu, F. F., Neyfakh, A. A., and Lee, H. (2009) J. Bacteriol. 191,
1311–1319

17. Salzberg, L. I., and Helmann, J. D. (2008) J. Bacteriol. 190, 7797–7807
18. Roy, H., and Ibba, M. (2008)Methods 44, 164–169
19. Fischer, A. E., Beuning, P. J., and Musier-Forsyth, K. (1999) J. Biol. Chem.

274, 37093–37096
20. Ataide, S. F., and Ibba, M. (2004) Biochemistry 43, 11836–11841
21. Hogg, J., Schiefermayr, E., Schiltz, E., and Igloi, G. L. (2008) Protein Expr.

Purif. 61, 163–167
22. Bligh, E. G., and Dyer, W. J. (1959) Can. J. Biochem. Physiol. 37, 911–917
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